機械学習は何のためにあるのか?
数十年前から機械学習テクノロジー製品を提供してきたSAS Institute Japan(以下、SAS)は、機械学習をビジネス価値につなげることにフォーカスして大幅な強化・拡張を続けている。現に、Fortune 500のトップ100社中90社がSASを採用しており、世界中で80,000サイトの導入実績を誇る、アナリティクス・ソフトウェアとサービスのリーディング・カンパニーだ。
そんなアナリティクス・ソリューションを先進的に提供してきた同社から見て、「昨今、マーケティングの文脈で語られる機械学習の話では『そもそも機械学習とは何をやるためのものなのか』という話が抜け落ちています」と津田氏は語る。
「機械学習において、人間がやるべきことは“問いかけること”、“データを準備すること”の2つのみ。もちろんデータマイニングや統計ソフトを使わずに、人間が経験や勘をもとに予測することもできます。ただ機械学習によって、より高精度で予測し、詳細に説明できるのであれば、使うべきだと思うのです」(津田氏)
また、予測に機械学習を活用した効果として、津田氏は海外小売業におけるクーポンの利用率を例に挙げた。
「ある企業で、データ分析をせずクーポン配布を行ったところ、利用率は1%未満でした。さらにその結果に基づいて配布時間や内容を改善したことで、利用率を6%から10%まで向上させることができました。しかし機械学習で顧客の購買行動を分析し、予測された最適なタイミングでクーポン配布を行った結果、利用率を25%まで大幅に向上することができました。
つまり、ロジックに基づいて予測をすれば、確実に成果を伸ばすことができる。こういった事例からも、機械学習の必要性を実感していただけるのではないでしょうか」(津田氏)
マーケターに必要なのは「問いかける」こと
機械学習の詳細について触れる前に、データ分析や統計モデルについての理解確認として津田氏は次の資料を提示した。
統計モデルの入門としてよく引き合いに出される、アッシェンフェルター氏が提唱したワインの価格を決定づけるモデルだ。この式ができる以前、ワインの価格は評論家による定性的な味の評価によって決まっていたが、この式の登場をきっかけに定量的な価格設定が行われるようになった。
「なんだか難しそうな式だなと思われるかもしれませんが、とても簡単です。数式を読み解く際、重要なのは符号を見ることです。実際に計算式を見てみると、“冬の降雨量” は係数の前がプラス(+)になっているため、冬に雨がたくさん降るとワインの価格が高くなるということがわかります。逆に収穫期の降雨量はマイナス(-)になっているので、収穫期に雨が降るのは価格が下がる要因になるということですね」と津田氏は解説した。
データが大切だと言われる所以は、こうした数式を立てるための十分な説明変数(ここでは冬の降雨量や気温など)を取ってくる必要があるからだという。画像の右側にあるグラフを見てもらいたい。青色の実線が数式による理論値を表し、赤色の×印が様々なワインの実測値を表している。数式を立てた上で数字を当てはめたときに、すべてのデータが青色の直線上に乗っていたら、その計算式、つまり統計モデルは「超精確」であるのに対し、線上からやたらに離れたデータが散見されると「不精確」であるとされる。「この統計モデルの精確さを確認する作業をデータサイエンティストは日々繰り返している」と津田氏は説明した。