MarkeZine(マーケジン)

記事種別

機械学習のマーケティング活用、ポイントを総まとめ~「MarkeZine Day 2016 A.I.」

2016/06/28 10:00

マーケティングに活用しやすい5つのアルゴリズム

 次に登壇したのは、ナレッジコミュニケーションの取締役副社長でCOOの小泉裕二氏だ。同社では2011年からクラウドインテグレーター事業を開始し、Microsoft Azure(以下、Azure)などの導入支援・運用サポートなどを行い、いち早く機械学習やAI活用に取り組んできた。

株式会社ナレッジコミュニケーション 取締役副社長 COO 小泉裕二氏

 小泉氏はまず機械学習をマーケティング領域で活用する際の、基本的なアルゴリズムを5つ紹介した。

1.教師あり分類(Classification)

 例えば、ECサイトにおいて過去の購入履歴や利用頻度、性別やアクセスログを学習させることで、優良顧客の特徴を抽出、そして分類できるようになる。

2.回帰分析(Regression)

 数字の予測を行う。過去の実績から売上の予測をしたり広告や行動ログを学習して将来のコンバージョンの数やクリック数を予測できる。

3.レコメンド(Recommendation)

 商品の購買履歴に基づいたレコメンドはもちろん、ある商品と類似しているものをすすめることも可能にする。

4.異常検知(Anormaly)

 異常なものを検知することができるため、膨大なトラフィックの中から、人間以外のアクセスを検出したりブロックしたりレポートとして伝えるといった活用ができる。

5.教師なし分類(Clustering)

 他のアルゴリズムと併用して使うことが多い。教師データと呼ばれる正解のデータがなくても利用でき、性質が近いものをグループ化してまとめるアルゴリズム。

 「データの中で見えている物を手掛かりに見えていない物を予測する技術が機械学習です。これらのアルゴリズムとデータをもとに学習させることで、予測や識別を可能にします」(小泉氏)

 小泉氏は加えて、「機械学習は、A/Bテストや会員分析など、すでに多くのベンダーから専用サービスが提供されている」と機械学習のマーケティングにおける活用は進んでいることを明らかにした。一方で、コンテンツ最適化やマッチング最適化など図の赤枠に囲まれているものは、効果が見込めるにも関わらずまだ活用が進んでいないという。

 また、小泉氏は機械学習を活用する際にクラウドを基盤として活用することの重要性を語った。

 「機械学習は利用にあたって膨大なリソースが必要となるため、Azureのようなクラウドの活用は、大きなメリットがあると考えています。またAzure MLには、最新のアルゴリズムが利用できる環境も整っています。自社で環境を用意して機械学習のモジュールを開発するよりも、格段に速いスピードで実証実験ができます」(小泉氏)

 そう語る同氏は、一方で「自社でその環境を整えるのは難しい。良いパートナーと出会うのも重要」と最後に語った。

プライベートDMPとパブリックDMPを掛け合わせる機械学習の技術

株式会社ブレインパッド 取締役 安田誠氏

 次に、データを活用したマーケティングアクションのトレンドについてブレインパッドの取締役、安田誠氏によるセッションが行われた。

 「データ・ドリブン・マーケティングの根幹にあるのがDMPだ」と語る安田氏は、以下の図を提示した。DMPは様々な広告施策はもちろん、複数チャネルからのフィードバックが全て集まる基盤であることを説明した。

 「DMPには、企業が自社ビジネスのために利用するデータ基盤である『プライベートDMP』と、データ販売を目的として構築する『パブリックDMP』の2種類がありますが、どちらがいいというものではなく、機械学習の技術を活用して両者のデータを組み合わせながら、ビジネスを拡大させるマーケティングアクションへとつなげていくことが非常に重要です」(安田氏)

 ブレインパッドはプライベートDMP「Rtoaster(アールトースター)」を提供し、企業のデータ基盤を支えている。くわえて、Rtoasterにはレコメンド機能を搭載しているため、データ蓄積のみならずリアルタイムに複数のチャネルで施策が実施できる特徴を持つ。

 また、ブレインパッドではDMPで蓄積したデータをもとに機械学習を活用する取り組みも行っている。例えば女性向けインナーウェアを販売するピーチ・ジョンでは、これまでユーザーのセグメントを手動で行っていた。しかし、「Rtoaster」のレコメンド機能とデータマネジメントツール「DeltaCube」の自動クラスタリング機能を使い、セグメントの自動作成と機械学習による自動分類を実施。その結果、作業工数は下がり、もっとも効果的なセグメントではCVRが3.8倍に向上するなど大きな成果を上げた。

 「機械学習のアルゴリズムは、後から調整が利く一方、データは蓄積しないと何も残らないので、何物にも代替できません。今後、データをどのように蓄積するかが、マーケティングの成否を分かつ大きなポイントになってくると考えています」(安田氏)


  • このエントリーをはてなブックマークに追加
  • プッシュ通知を受け取る

関連リンク

All contents copyright © 2006-2018 Shoeisha Co., Ltd. All rights reserved. ver.1.5